Abstract

A 2D Mn-based MOF ([Mn4(PDI)2(DMF)7(H2O)]n (MOF 1)) (H4PDI = 5,5′-(1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn][3,8]phenanthroline-2,7-diyl)diisophthalic acid) was synthesized. Visible light excited Mn-PDI unit in MOF 1 oxidizes NaSO2CF3 to generate CF3 radical and enables MOF 1 to exhibit activity for trifluoromethylation of (hetero)arenes under visible light. The unusual stability of MOF 1 in the trifluoromethylation reactions can be attributed to its unique structure, which prevents it from corrosion by acid byproduct. The peeling of MOF 1 to ultrathin nanosheets or partial oxidation of Mn(II) to Mn(III) in MOF 1 led to MOL 1 and NB 1 with significant improved activity for trifluoromethylation reactions, demonstrating the important role of composition and morphology of a catalyst on its performance. The light initiated trifluoromethylation reactions over these Mn-based MOFs was applied to a variety of substrates. This study provides an efficient strategy for synthesis of trifluoromethylated compounds and highlights the potential of MOFs in light initiated organic syntheses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.