Abstract

Suspension cell cultures of rice minichromosomes were established. The minichromosomes in suspension cultured cells were mitotically stable and had active gene expression, thus have the potential to be used as gene expression vectors to produce valuable bioactive products. The plant artificial chromosome (PAC) is a novel vector for plant genetic engineering to produce genetically modified crops with multiple transgenes, or to produce valuable bioactive products through the expression of multiple genes or biochemical pathways as a bioreactor. PAC is mainly constructed by engineered minichromosomes through telomere-mediated chromosome truncations. We have constructed rice minichromosomes in a previous study. Thus, the understanding of rice minichromosome inheritance under different culture conditions has potential importance for their utility in future studies and applications. In this study, we performed suspension cultures of three rice minichromosome-containing cell lines, 1004-111, 1008-100 and 1004-011. Two cell lines, 1004-111 and 1008-100, showed typical S growth pattern consisting of a lag phase, an active growing exponential phase and a stationary phase, whereas cell line 1004-011 grew very slowly and eventually died. Both 1004-111 and 1008-100 minichromosomes were stably transmitted in cell suspension cultures without any abnormality. Foreign gene expression was verified from 1004-111 and 1008-100 minichromosomes in suspension cultures. The stable mitotic inheritance of minichromosomes and gene expression from them indicated that rice minichromosomes could be maintained and propagated in cell suspension cultures. This study tested key parameters for suspension cultures of rice cell lines with minichromosomes, and proved in concept the potential for industrial use of PAC vectors as bioreactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.