Abstract

One of the main problems in modern concrete science is the low durability of reinforced concrete structures and constructions, especially those located in harsh climatic conditions and saturated with marine or mineralized water. Existing standards guide designers and builders to increase the density of concrete with increasing degree of aggressive impact, as well as through cyclical freezing of concrete structures, which taken as the main indicator of durability, air entrainment is mandatory. The problem is not only the provision of high frost resistance of concrete, but also finding a method of controlling it, which, as a rule, takes quite a long time. The destruction of concrete during cyclical freezing occurs not only due to the formation of ice in the pores of concrete, but also as a result of temperature stresses in concrete with ice, as well as the washing out of portlandite and aging of the cement gel – the main structural element of hardened cement paste. This means that the durability of the concrete can be ensured by maintaining the finely dispersed structure of the hardened cement paste, preventing crystallization of the gel from external influences or increasing its basicity. It is shown that only water reduction and pozzolanization, which provides residual portlandite content in Portland cement concrete stone 2–5 % by weight ensure the achievement of increased durability of concrete, reinforced concrete structures and constructions. A method is proposed to assess the stability of hydrate phases as well as the relationship between the durability and frost resistance of concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call