Abstract

To understand the effect of aging on microsaccade functions and brain physiologic responses, we quantified microsaccades and their physiologic correlates (including their interaction with alpha band brain oscillation) in normal subjects of different ages. Twenty-two normally sighted young (18 to 29 years), 22 middle-aged (31 to 55 years), and 22 elderly subjects (56 to 77 years) participated in this cross-sectional study. Dense array EEG and high-resolution eye-tracking data were simultaneously recorded during a fixation task. We quantified microsaccade features, spike potential (SP), microsaccadic lambda response (MLR) and microsaccade-related spectral perturbation (ERSP), and intertrial coherence (ITC) in the alpha and beta frequency bands and compared them between three age groups. After microsaccade onset, (1) alpha band ERSP increased (100 to 150 ms) occipitally and ITC increased (150 to 220 ms) globally in the brain; (2) low beta ITC increased (150 to 220 ms) in occipital and central regions and peaked (0 to 50 ms) in frontal region; and (3) high beta ITC increased (0 to 50 ms) globally with no beta band ERSP changes. Microsaccade features, the latency and amplitude of SP and MLR, and microsaccade-related temporal-spectral power and synchronization dynamics were all stable across different age groups. Microsaccades are well preserved in aging and can be used as reference points for studying neurodegenerative or neuro-ophthalmologic diseases where the oculomotor system is affected. Microsaccade-induced alpha band activity is a potential biomarker to better understand and monitor these diseases, and we propose that microsaccades trigger "cortical refreshment" by resetting alpha band phase globally to prepare (sensitize) the brain for subsequent visual processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call