Abstract

Recently, stable meshfree methods for computational fluid mechanics have attracted rising interest. So far such methods mostly resort to similar strategies as already used for stabilized finite element formulations. In this study, we introduce an information theoretical interpretation of Petrov–Galerkin methods and Green’s functions. As a consequence of such an interpretation, we establish a new class of methods, the so-called information flux methods. These schemes may not be considered as stabilized methods, but rather as methods which are stable by their very nature. Using the example of convection–diffusion problems, we demonstrate these methods’ excellent stability and accuracy, both in one and higher dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.