Abstract
We consider the two-sided stable matching setting in which there may be uncertainty about the agents’ preferences due to limited information or communication. We consider three models of uncertainty: (1) lottery model — in which for each agent, there is a probability distribution over linear preferences, (2) compact indifference model — for each agent, a weak preference order is specified and each linear order compatible with the weak order is equally likely and (3) joint probability model — there is a lottery over preference profiles. For each of the models, we study the computational complexity of computing the stability probability of a given matching as well as finding a matching with the highest probability of being stable. We also examine more restricted problems such as deciding whether a certainly stable matching exists. We find a rich complexity landscape for these problems, indicating that the form uncertainty takes is significant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.