Abstract

Approximations that result from the natural matching of two stable dissipative difference schemes across a coordinate line are shown to be stable. The basic idea is to reformulate the matching scheme consistent to an equivalent initial boundary value problem and to verify the algebraic conditions for stability of such systems. An interesting comparison to the above result is the case of redefinition of a scheme at a single point. In particular, we show that some unstable perturbations do not upset the stability of the Lax–Wendroff scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.