Abstract

We have evaluated the ability of new herpesvirus saimiri (HVS)-based vectors to deliver a marker gene green fluorescent protein (GFP) into human bone marrow (BM) stromal cells and their progenitors. Stromal cells expanded from adherent layers of long-term BM cultures (LTC) were susceptible to HVS-based infection in a dose-dependent manner, and the efficiency of 94.8 +/- 2.0% was achieved using single exposure with HVS/EGFP vector at multiplicity of infection (moi) of approximately 50. Colony-forming unit-fibroblast (CFU-F) assay established the ability of HVS-based vectors to infect progenitors for bone marrow stroma fibroblasts and transfer the marker gene over multiple cell divisions in the absence of selective pressure. HVS was not toxic for stromal cells and progenitors and no viral replication was detected upon growth of modified stroma. On the basis these data, we believe that HVS-based constructs can offer a new opportunity for selective gene delivery into bone marrow stromal cells and progenitors. The ability of HVS to infect nondividing cells can be considered advantageous in the development of both ex vivo and in vivo strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.