Abstract

In the early 1990s, Turaev introduced the notion of shadows as a combinatorial presentation of both 4 and 3-manifolds. Later, Costantino–Thurston revealed a strong relation between the Stein factorizations of stable maps of 3-manifolds into the real plane and the shadows of the manifolds. In fact, a shadow can be seen locally as the Stein factorization of a stable map. In this paper, we define the notion of stable map complexity for a compact orientable 3-manifold bounded by (possibly empty) tori counting, with some weights, the minimal number of singular fibers of codimension 2 of stable maps into the real plane, and prove that this number equals the minimal number of vertices of its branched shadows. In consequence, we give a complete characterization of hyperbolic links in the 3-sphere whose exteriors have stable map complexity 1 in terms of Dehn surgeries, and also give an observation concerning the coincidence of the stable map complexity and shadow complexity using estimations of hyperbolic volumes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call