Abstract

A recombinant yeast plasmid containing the gene for beta-galactosidase was tested for stability in a host auxotrophic for leucine. Plasmid loss was studied at different dilution rates in continuous culture under selective as well as non-selective conditions. It was observed that the instability of the culture was higher at low dilution rates in selective medium, while the pattern was reversed when complex non-selective medium was used, with plasmid-containing cells competing effectively with plasmid-free cells at low dilution rates. This was attributed to a low residual yeast extract concentration in the medium at low dilution rates. Since yeast extract was the sole source of leucine, this limited the growth of plasmid-free cells, which were auxotrophic for leucine. Growth rate studies also indicated a competitive advantage of the plasmid-containing cells over the plasmid-free cells at low yeast extract concentrations in semi-defined medium. Using the above data, a modified continuous culture was run using non-selective medium at a low dilution rate of 0.05 h(-1). This resulted in stable coexistence of plasmid-containing and plasmid-free cells and hence sustained expression of beta-galactosidase at approximately 330 OD420l(-1) h(-1) throughout the period of cultivation (134 h).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call