Abstract

A simple and robust strategy is reported in this Article for the synthesis of stable magnetic surface-enhanced Raman scattering (SERS) hot spots in superparamagnetic, raspberry-shaped, mesoscopic gold particles that are composed of superparamagnetic Fe3O4 cores, amorphous SiO2 mediation shells, and outer individual Au nanoparticles. The average interparticle gaps between the Au nanoparticles can be finely tuned by controlling the synthesis conditions, resulting in the formation of adequate SERS hot spots. The magnetic cores provide the capability to concentrate solution analytes adsorbed on the surfaces of the composite particles with the assistance of an external magnetic field, leading to ultrasensitive SERS detection of target species with concentration as low as femtomolar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.