Abstract

Bisphenols have extensively been found in various environmental matrices and caused public concerns due to their endocrine-disrupting potential. Herein, we developed a ZIF-67@ZIF-8-derived CoZn/nitrogen-doped carbon (CoZn/NC) as a robust adsorbent for bisphenols in wastewaters. The self-generating carbon nanotubes and the open metal sites provided sufficient adsorption sites. The Co component endowed the derivative with strong magnetism facilitating its separation from water. CoZn/NC exhibited exceeding water stability in pH 3 − 12 solution and withstood water up to 15 days. The great applicability of CoZn/NC was validated with 16 real wastewaters from different sources (recoveries exceeding 97.9%). Fast adsorption kinetics were observed with removal efficiencies above 96.5% within 1 min. The adsorption isotherms were well fitted with the Langmuir model, with adsorption capacities of 222, 200, 193, and 321 mg g−1 for bisphenol A, bisphenol F, bisphenol S, and bisphenol AF, respectively. Variations in external conditions, including pH 3 − 9, humic acid (50 mg L−1), and NaCl (0.1 mol L−1), had negligible impacts on the adsorption process. The characterizations and density functional theory computation demonstrated that electrostatic, hydrophobic, π − π, and cation− π interactions are the driving forces in this system. The as-prepared CoZn/NC exhibits great promise in real wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.