Abstract

Aqueous surfactant suspensions of single walled carbon nanotubes (SWNTs) are very sensitive to environmental conditions. For example, the photoluminescence of semiconducting SWNTs varies significantly with concentration, pH, or salinity. In most cases, these factors restrict the range of applicability of SWNT suspensions. Here, we report a simple strategy to obtain stable and highly luminescent individualized SWNTs at pH values ranging from 1 to 11, as well as in highly saline buffers. This strategy relies on combining SWNTs previously suspended in sodium dodecylbenzene sulfonate (SDBS) with biocompatible poly(vinyl pyrrolidone) (PVP), which can be polymerized in situ to entrap the SWNT-SDBS micelles. We present a model that accounts for the photoluminescence stability of these suspensions based on PVP morphological changes at different pH values. Moreover, we demonstrate the effectiveness of these highly stable suspensions by imaging individual luminescent SWNTs on the surface of live human embryonic kidney cells (HEK cells).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.