Abstract
Long-persistent luminescence (LPL) materials have attracted intensive attention due to their fascinating emission after excitation. However, current LPL materials typically depend on external doping to introduce traps or emitting centers, resulting in a complex synthesis and controllability. For the first time, we develop another category of undoped LPL materials based on antimonate CaSb2O6, which exhibits blue LPL for over 8000 s. Both experimental and theoretical evidence indicate that excitons are trapped by intrinsic oxygen vacancies. Then, they are detrapped and recombine through singlet and triplet emission of Sb3+ to form LPL. Moreover, CaSb2O6 maintains approximately 100% of its initial LPL performance and structural integrity even after being treated under 1000 °C, UV irradiation, and extreme conditions (pH = 1 or 13). This study highlights the significant potential of antimonates as robust and versatile luminescent materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.