Abstract

The choice of the scheduling algorithm is a major design criteria for internet switches and routers. Research on scheduling algorithms has mainly focused on maximum weight matching scheduling algorithms, which are computationally very complex and on the computationally less complex maximal weight matching algorithms which require a speedup of two to guarantee the stability of the switch. For practical purposes, neither a high computational complexity nor a speedup is desirable. In this paper, we propose a specific maximal weight matching algorithm that guarantees the stability of a single switch without a speedup. Whereas initial research has only focused on scheduling algorithms that guarantee the stability of a single switch, it is known that scheduling algorithms that guarantee the stability of individual switches do not necessarily stabilize networks of switches. Recent work has shown how scheduling algorithms for single switches can be modified in order to design scheduling algorithms that stabilize networks of input-queued switches. We apply those results to the design of the maximal weight matching algorithm proposed in this paper and show that the algorithm does not only stabilize a single switch, but also networks of input-queued switches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.