Abstract
To promote the practical application of TiO2 in photocatalytic toluene oxidation, the honeycomb aluminum plates were selected as the metal substrate for the loading of TiO2 powder. Surface-etching treatment was performed and titanium tetrachloride was selected as the binder to strengthen the loading stability. The loading stability and photocatalytic activity of the monolithic catalyst were further investigated, and the optimal surface treatment scheme (acid etching with 15.0 wt.% HNO3 solution for 15 min impregnation) was proposed. Therein, the optimal monolithic catalyst could achieve the loading efficiency of 42.4% and toluene degradation efficiencies of 76.2%. The mechanism for the stable loading of TiO2 was revealed by experiment and DFT calculation. The high surface roughness of metal substrate and the strong chemisorption between TiO2 and TiCl4 accounted for the high loading efficiency and photocatalytic activity. This work provides the pioneering exploration for the practical application of TiO2 catalysts loaded on the surface of metal substrate for VOCs removal, which is of significance for the large-scaled application of photocatalytic technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.