Abstract

Several isostructural lanthanide metal-organic frameworks, viz. [Ln(DCHB)1.5phen]n (Ln-MOFs, where Ln = Eu for 1, Tb for 2, Sm for 3 and Dy for 4), are successfully synthesized through the hydrothermal reactions of 4'-di(4-carboxylphenoxy)hydroxyl-2, 2'-bipyridyl (H2DCHB) and lanthanide nitrates as well as chelator 1,10-phenantroline (phen). These structures are characterized by single-crystal X-ray diffraction, and the representative Ln-MOF 1 is a fivefold interpenetrated framework with the uncoordinated Lewis base N sites form DCHB2- ligands. The photoluminescence research studies reveal that Ln-MOFs 1-4 exhibit characteristic fluorescent emissions from ligand-induced lanthanide Ln(III) ions, while the single-component emission spectra of Ln-MOF 4 are all located in a white region under different excitations. The absence of coordinated water and the interpenetration property of the structures are conducive to the structure rigidity, and the results display that Ln-MOF 1 has high thermal/chemical stabilities in common solvents and a wide pH range as well as the boiling water. Notably, luminescent sensing studies reveal that Ln-MOF 1 with prominent fluorescence properties can perform in highly sensitive and selective sensing of vanillylmandelic acid (VMA) in aqueous systems (KSV = 562.8 L·mol-1; LOD = 4.6 × 10-4 M), which can potentially establish a detection platform for the diagnosis of pheochromocytoma via multiquenching mechanisms. Moreover, the 1@MMMs sensing membranes comprised of Ln-MOF 1 and a poly(vinylidene fluoride) (PVDF) polymer can also be facilely developed for VMA detection in aqueous media, suggesting the enhanced convenience and efficiency of practical sensing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call