Abstract

Zooplankton plays a mediating role in the food web of aquatic ecosystems, the stable carbon and nitrogen isotopes (δ13C and δ15N) of which have been widely used to study the utilization of food resources, material cycling pathways, and trophic relationships. The δ13C and δ15N values of zooplankton have been used to predict primary productivity, sources and sinks of pollutants and environmental changes. To better use δ13C and δ15N of zooplankton as ecological and environmental indicators, it is particularly important to understand their temporal and spatial variations and the influencing factors. Based on related literature, we synthesized spatial and temporal variations in δ13C and δ15N of zooplankton in different aquatic ecosystems and taxa groups, and the use of δ13C and δ15N indicators for ecological processes and environmental changes. The δ13C and δ15N of zooplankton are largely affected by its food sources, and its stable isotope compositions are in turn affected by primary productivity and nitrogen sources. We proposed that the combination of δ13C and δ15N in zooplankton with transportation and transformation of emerging pollutants would form a multi-means, multi-disciplinary and multi-scale research direction in the fields of earth science and biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call