Abstract

Stable isotope studies of sulfate minerals are especially useful for unraveling the geochemical history of geological systems. All sulfate minerals can yield sulfur and oxygen isotope data. Hydrous sulfate minerals, such as gypsum, also yield oxygen and hydrogen isotope data for the water of hydration, and more complex sulfate minerals, such as alunite and jarosite also yield oxygen and hydrogen isotope data from hydroxyl sites. Applications of stable isotope data can be divided into two broad categories: geothermometry and tracer studies. The equilibrium partitioning of stable isotopes between two substances, such as the isotopes of sulfur between barite and pyrite, is a function of temperature. Studies can also use stable isotopes as a tracer to fingerprint various sources of hydrogen, oxygen, and sulfur, and to identify physical and chemical processes such as evaporation of water, mixing of waters, and reduction of sulfate to sulfide. Studies of sulfate minerals range from low-temperature surficial processes associated with the evaporation of seawater to form evaporite deposits to high-temperature magmatic-hydrothermal processes associated with the formation of base-and precious-metal deposits. Studies have been conducted on scales from submicroscopic chemical processes associated with the weathering of pyrite to global processes affecting the sulfur budget of the oceans. Sulfate isotope studies provide important information to investigations of energy and mineral resources, environmental geochemistry, paleoclimates, oceanography (past and present), sedimentary, igneous, and metamorphic processes, Earth systems, geomicrobiology, and hydrology. One of the most important aspects of understanding and interpreting the stable isotope characteristics of sulfate minerals is the complex interplay between equilibrium and kinetic chemical and isotopic processes. With few exceptions, sulfate minerals are precipitated from water or have extensively interacted with water at some time in their history. Because of this nearly ubiquitous association with water, the kinetics of isotopic exchange reactions among dissolved species and solids …

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.