Abstract
Understanding the nutritional ecology of orchids, particularly those in symbiosis with rhizoctonias, presents a complex challenge. This complexity arises partly from the absence of macroscopic fruit bodies in rhizoctonias, which impedes the acquisition of their stable isotope data. In this study, we investigated the fungal associations and isotopic signatures in the pelotons of Stigmatodactylus sikokianus (associated with non-ectomycorrhizal [non-ECM] rhizoctonias) and Chamaegastrodia shikokiana (associated with ECM rhizoctonias). Our research reveals elevated levels of 13C enrichment in S. sikokianus plants and their pelotons, similar to those found in fully mycoheterotrophic orchids and their mycobionts. Interestingly, C. shikokiana plants and their pelotons exhibited even higher levels of 13C and 15N enrichment than many other fully mycoheterotrophic species. Our findings imply that both ECM and saprotrophic mycobionts, including certain rhizoctonias, can fulfill the carbon needs of highly mycoheterotrophic orchids. This finding also indicates that 13C enrichment can be an indicator of mycoheterotrophy in at least some rhizoctonia-associated orchids, despite the typically low 13C enrichment in non-ECM rhizoctonias. Our demonstration of partial mycoheterotrophy in S. sikokianus suggests a broader prevalence of this nutritional strategy among orchids, given that almost all orchids are associated with non-ECM rhizoctonias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.