Abstract
Sialylated N-glycans play pivotal role in several important biological and pathological processes. Their sialyl-linkage isomers, mostly α-2,3- and α-2,6-linked, act differently during the cellular events and several diseases. While mass spectrometry (MS) technology is a powerful tool in N-glycome analysis, it still suffers from an inability to distinguish linkage isomers of native N-glycans. Herein, we described a sequential selective derivatization method, by which α-2,6- and α-2,3-linked sialic acids are sequentially labeled with methylamide incorporated with a different stable isotope. Isobaric labeling avoids inducing bias in ionization efficiency and chromatographic behavior. In optimized reaction conditions, high derivatization selectivity (∼99%) was achieved for both α-2,3- and α-2,6-linked sialic acid. High accuracy of quantitation within a dynamic range of 2 orders of magnitude and high reproducibility (CV < 20%, n = 3) were demonstrated using standard glycans and multisialylated N-glycans. Finally, this method was applied in profiling the N-glycome of serum from CRC patients, where a level of six sialyl-linkage isomers were found to be altered significantly compared with that from healthy individuals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.