Abstract

A radiocarbon controlled stable isotope record from Seneca Lake, New York, has defined a relatively cold paleoclimate (10.1–8.2 ka) that was younger, and regionally of greater magnitude, than the well-known Younger Dryas cold interval. These new isotope results are supported by published pollen records, from throughout the Great Lakes region, that also define a relatively cold paleoclimate at this time. This cold paleoclimate occurred during global meltwater pulse IB when large volumes of cold, isotopically light (low δ 18 O) meltwater flowed into the Great Lakes from the rapidly retreating Laurentide ice sheet. The discharge of cold glacial meltwaters into the Great Lakes during pulse IB suppressed downwind summer temperatures in the Finger Lakes region and provided a source of isotopically light precipitation. Published proxy data from Greenland, Norway, and Alaska also record relatively cold paleoclimates following the Younger Dryas, suggesting widespread Northern Hemisphere cooling as a direct result of the rapid melting of the Laurentide ice sheet between 10 and 8 ka.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.