Abstract

The study of oxygen and carbon isotopic ratios has gained importance to determine the origin of ore-bearing fluids, carbon origin, and also to determine the formation temperature of non-sulfide Pb and Zn minerals. In order to determine the origin of fluids and carbon existing in Zn carbonate minerals in Chah-Talkh deposit, initially the amounts of δ18OSMOW and δ13CPDB changes in various zinc minerals in important deposits in Iran and the world were studied, and then by comparing these values in Chah-Talkh deposit with those of other deposits, the origin of fluids responsible for ore forming, carbon, and formation temperature of Chah-Talkh deposit was determined. The range of δ18OSMOW changes in smithsonite mineral in non-sulfide lead and zinc deposits varies from 18.3 to 31.6 ‰, and δ18OSMOW in hydrozincite mineral varies from 7.8 to 27 ‰. Due to the impossibility of smithsonite sampling from Chah-Talkh deposit (due to it being fine-grained and dispersed), hydrozincite minerals which have high isotopic similarities with smithsonite are used for the isotopic analysis of carbon and oxygen. The range of δ18OSMOW changes in hydrozincite mineral of Chah-Talkh deposit varies from 7.8 to 15.15 ‰, which places in the domain of metamorphic water. The extensiveness of δ18OSMOW changes in Chah-Talkh indicates the role of at least two fluids in the formation of non-sulfide minerals. The obtained formation temperature of non-sulfide minerals (hydrozincite) in Chah-Talkh deposit is 70 to 100 °C, which indicates the role of metamorphic fluids in the formation of deposit. Complete weathering of sulfide minerals to a depth of 134 m confirms the role of rising metamorphic fluids in the formation of non-sulfide minerals. The δ13CPDB values of Chah-Talkh deposit are set in the range of atmospheric CO2 and carbonate rocks, in which the existence of atmospheric CO2 indicates the role of atmospheric fluids, and the existence of carbonate carbon rock indicates of the role of metamorphic fluids in the precipitation of non-sulfide Zn minerals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call