Abstract

Engineered nanomaterials (NMs) are often compositionally indistinguishable from their natural counterparts, and thus their tracking in the environment or within the biota requires the development of appropriate labeling tools. Stable isotope labeling has become a well-established such tool, developed to assign 'ownership' or a 'source' to engineered NMs, enabling their tracing and quantification, especially in complex environments. A particular methodological challenge for stable isotope labeling is to ensure that the label is traceable in a range of environmental or biological scenarios but does not induce modification of the properties of the NM or lose its signal, thus retaining realism and relevance. This protocol describes a strategy for stable isotope labeling of several widely used metal and metal oxide NMs, namely ZnO, CuO, Ag, and TiO2, using isotopically enriched precursors, namely 67Zn or 68Zn metal, 65CuCl2, 107Ag or 109Ag metal, and 47TiO2 powder. A complete synthesis requires 1-8 d, depending on the type of NM, the precursors used, and the synthesis methods adopted. The physicochemical properties of the labeled particles are determined by optical, diffraction, and spectroscopic techniques for quality control. The procedures for tracing the labels in aquatic (snail and mussel) and terrestrial (earthworm) organisms and for monitoring the environmental transformation of labeled silver (Ag) NMs are also described. We envision that this labeling strategy will be adopted by industry to facilitate applications such as nanosafety assessments before NMs enter the market and environment, as well as for product authentication and tracking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.