Abstract

Traditional strategies for the metabolic profiling of doping are limited by the unpredictable metabolic pathways and the numerous proportions of background and chemical noise that lead to inadequate metabolism knowledge, thereby affecting the selection of optimal detection targets. Thus, a stable isotope labeling-based nontargeted strategy combined with ultra-high-performance liquid chromatography–high-resolution mass spectrometry (UHPLC-HRMS) was first proposed for the effective and rapid metabolism analysis of small-molecule doping agents and demonstrated via its application to a novel doping BPC-157. Using 13C/15N-labeled BPC-157, a complete workflow including automatic 13C0,15N0-13C6,15N2 m/z pair picking based on the characteristic behaviors of isotope pairs was constructed, and one metabolite produced by a novel metabolic pathway plus eight metabolites produced by the conventional amide-bond breaking metabolic pathway were successfully discovered from two incubation models. Furthermore, a specific method for the detection of BPC-157 and the five main metabolites in human urine was developed and validated with satisfactory detection limits (0.01~0.11 ng/mL) and excellent quantitative ability (linearity: 0.02~50 ng/mL with R2 > 0.999; relative error (RE)% < 10% and relative standard deviation (RSD)% < 5%; recovery > 90%). The novel metabolic pathway and the in vitro metabolic profile could provide new insights into the biotransformation of BPC-157 and improved targets for doping control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call