Abstract

Toxin-resistant predators may suffer costs from eating chemically defended prey and do not feed exclusively on toxic prey. Common Gartersnakes (Thamnophis sirtalis (Linnaeus, 1758)) have been considered the drivers of an evolutionary arms race with highly toxic newts (genus Taricha Gray, 1850), which they consume with few or no deleterious effects. However, how frequently newts are consumed in nature is less clear. To address this question, we investigated the diets of Th. sirtalis at a site in central Oregon where snakes have high levels of resistance and newts have high levels of tetrodotoxin in the skin. Because snake diets are difficult to quantify using traditional means, we used stable isotopes to estimate the proportion of Th. sirtalis diets made up of newts. Our estimate for the proportion of Th. sirtalis diet made up of Rough-skinned Newts (Taricha granulosa (Skilton, 1849)) at this site is 3.2%. Mole Salamanders (genus Ambystoma Tschudi, 1838) were predicted to be the most important prey, followed by slugs, chorus frogs, and mice, with a very minor role for earthworms. Our results demonstrate that even though Th. sirtalis are physiologically capable of consuming toxic prey, they do not often do so. Generalist predators can be exposed to very strong selection from, and exert reciprocal selection on even rarely eaten, chemically defended prey.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.