Abstract

Eastern boundary currents are often described as ‘wasp-waist’ ecosystems in which one or few mid-level forage species support a high diversity of larger predators that are highly susceptible to fluctuations in prey biomass. The assumption of wasp-waist control has not been empirically tested in all such ecosystems. This study used stable isotope analysis to test the hypothesis of wasp-waist control in the southern California Current large marine ecosystem (CCLME). We analyzed prey and predator tissue for δ13C and δ15N and used Bayesian mixing models to provide estimates of CCLME trophic dynamics from 2007–2010. Our results show high omnivory, planktivory by some predators, and a higher degree of trophic connectivity than that suggested by the wasp-waist model. Based on this study period, wasp-waist models oversimplify trophic dynamics within the CCLME and potentially other upwelling, pelagic ecosystems. Higher trophic connectivity in the CCLME likely increases ecosystem stability and resilience to perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.