Abstract
A combined gas chromatography/isotope ratio mass spectrometry (GC/IRMS) method has been developed that permits the direct stable carbon isotope analysis of N(O)-trifluoroacetylisopropyl esters of individual amino acids and their respective enantiomers at nanomole abundances. Calculation of the original δ 13C values of the amino acids is accomplished via a correction for the carbon introduced during the derivatization process. Previous GC/IRMS analyses of individual amino acids in the non-hydrolyzed water extract of an interior sample of a Murchison meteorite stone revealed an enrichment in 13C relative to terrestrial organic matter, in agreement with previous findings for bulk extracts. The range of amino acid δ 13C values (+5 to +30 ‰, PDB) suggests possible kinetic effects during synthesis. In this study, an apparent kinetic isotope effect was also observed for the amino acid products of a spark discharge experiment. These preliminary results are supportive of a similar mechanism for the abiotic synthesis of amino acids in the Murchison meteorite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.