Abstract
AbstractWe show that for a closed hyperbolic 3‐manifold, the size of the first eigenvalue of the Hodge Laplacian acting on coexact 1‐forms is comparable to an isoperimetric ratio relating geodesic length and stable commutator length with comparison constants that depend polynomially on the volume and on a lower bound on injectivity radius, refining estimates of Lipnowski and Stern. We use this estimate to show that there exist sequences of closed hyperbolic 3‐manifolds with injectivity radius bounded below and volume going to infinity for which the 1‐form Laplacian has spectral gap vanishing exponentially fast in the volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.