Abstract

Chrysene (1), 6-fluorochrysene (2), 6-chlorochrysene (3), and 6-bromochrysene (4) are cleanly monoprotonated in FSO3H·SbF5 (ca. 10:1)/SO2ClF at the C-12 position. 6-Acetylchrysene (5) is CO-protonated in FSO3H/SO2ClF with significant charge delocalization into the chrysene and provides a model for a C-6-protonated chrysenium cation. 4H-Cyclopenta[def]chrysene (6) is protonated at C-5 (site of bromination and acetylation). The observed chrysenium (methanochrysenium) cations are those predicted by AM1 to have the lowest energies. The NMR characteristics of the resulting arenium ions are discussed and the Δδ 13Cs are compared with AM1 calculated changes in charges [Δqc = qc(ion) − qc(neutral)]. Possible relationships between the charge delocalization path in chrysenium ions and metabolic activation of chrysenes by electrophilic pathways via the bay-region epoxide ring opening (→ PAH−DNA adduct) are evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.