Abstract

We present a new, stable method for interpreting the basement relief of a sedimentary basin which delineates sharp discontinuities in the basement relief and incorporates any law known a priori for the spatial variation of the density contrast. The subsurface region containing the basin is discretized into a grid of juxtaposed elementary prisms whose density contrasts are the parameters to be estimated. Any vertical line must intersect the basement relief only once, and the mass deficiency must be concentrated near the earth’s surface, subject to the observed gravity anomaly being fitted within the experimental errors. In addition, upper and lower bounds on the density contrast of each prism are introduced a priori (one of the bounds being zero), and the method assigns to each elementary prism a density contrast which is close to either bound. The basement relief is therefore delineated by the contact between the prisms with null and nonnull estimated density contrasts, the latter occupying the upper part of the discretized region. The method is stabilized by introducing constraints favoring solutions having the attributes (shared by most sedimentary basins) of being an isolated compact source with lateral borders dipping either vertically or toward the basin center and having horizontal dimensions much greater than its largest vertical dimension. Arbitrary laws of spatial variations of the density contrast, if known a priori, may be incorporated into the problem by assigning suitable values to the nonnull bound of each prism. The proposed method differs from previous stable methods by using no smoothness constraint on the interface to be estimated. As a result, it may be applied not only to intracratonic sag basins where the basement relief is essentially smooth but also to rift basins whose basements present discontinuities caused by faults. The method’s utility in mapping such basements was demonstrated in tests using synthetic data produced by simulated rift basins. The method mapped with good precision a sequence of step faults which are close to each other and present small vertical slips, a feature particularly difficult to detect from gravity data only. The method was also able to map isolated discontinuities with large vertical throw. The method was applied to the gravity data from Reco⁁ncavo basin, Brazil. The results showed close agreement with known geological structures of the basin. It also demonstrated the method’s ability to map a sequence of alternating terraces and structural lows that could not be detected just by inspecting the gravity anomaly. To demostrate the method’s flexibility in incorporating any a priori knowledge about the density contrast variation, it was applied to the Bouguer anomaly over the San Jacinto Graben, California. Two different exponential laws for the decrease of density contrast with depth were used, leading to estimated maximum depths between 2.2 and 2.4 km.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call