Abstract
The spread and invasion of the urban malaria vector Anopheles stephensi has emerged as a significant threat to ongoing malaria control and elimination efforts, particularly in Africa. The successful use of the maternally inherited endosymbiotic bacterium Wolbachia for arbovirus control has inspired the exploration of similar strategies for managing malaria vectors, necessitating the establishment of a stable Wolbachia-Anopheles symbiosis. In this study, we successfully transferred Wolbachia wPip into An. stephensi, resulting in the establishment of a stable transinfected HP1 line with 100% maternal transmission efficiency. We demonstrate that wPip in the HP1 line induces nearly complete unidirectional cytoplasmic incompatibility (CI) and maintains high densities in both somatic and germline tissues. Despite a modest reduction in lifespan and female reproductive capacity, our results suggest the Wolbachia infection in the HP1 line has little impact on life history traits, body size, and male mating competitiveness, as well as the ability of its larvae to tolerate rearing temperatures up to 38°C, although wPip densities moderately decrease when larvae are exposed to a constant 33°C and diurnal cyclic temperatures of 27-36°C and 27-38°C. These findings highlight the potential of the HP1 line as a robust candidate for further development in malaria control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.