Abstract

A stable and long-range antiferromagnetic (AFM) coupling without charge carrier mediators has been searched for a long time, but the existence of this kind of coupling is still lacking. Based on first principle calculations, we systematically study carrier free long-range AFM coupling in four transition metal chalcopyrite systems: ABTe2 (A = Cu or Ag, B = Ga or In) in the dilute doping case. The AFM coupling is mainly due to the p–d coupling and electron redistribution along the interacting chains. The relatively small energy difference between p and d orbitals, as well as between dopants and atoms in the middle of the chain can enhance the stability of long-range AFM configurations. A multi-band Hubbard model is proposed to provide fundamental understanding of long-range AFM coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.