Abstract

Many geophysical phenomena are characterized by properties that evolve over a wide range of scales which introduce difficulties when attempting to model these features in one computational method. We have developed a high-order finite difference method for the elastic wave equation that is able to efficiently handle varying temporal and spatial scales in a single, stand-alone framework. We apply this method to earthquake cycle models characterized by extremely long interseismic periods interspersed with abrupt, short periods of dynamic rupture. Through the use of summation-by-parts operators and weak enforcement of boundary conditions we derive a provably stable discretization. Time stepping is achieved through the implicit θ-method which allows us to take large time steps during the intermittent period between earthquakes and adapts appropriately to fully resolve rupture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.