Abstract

Several instances of mitochondrial DNA heterogeneity in grande and petite strains of Saccharomyces cerevisiae were examined. We have detected heterogeneity in the mtDNA from some of the progeny strains of a cross between two grande strains (D273-10B, MH41-7B) which differ in genome size and restriction cleavage pattern of their mtDNA. The progeny strains transmit restriction fragments characteristic of both parental strains from homologous regions of the mitochondrial genome, and this sequence heterogeneity is not eliminated by additional subcloning. Sequence diversity is more common in the mtDNA of petite than of grande strains of yeast. We have examined subclones of one petite strain to identify the origin of this variability. Many of the submolar restriction fragments persist in independent subclones of this petite after 15 and 30 cell divisions; some submolar fragments disappear, and some new fragments appear. We conclude that the observed sequence heterogeneity is due to molecular heterogeneity, i.e., to differences in the multiple copies of the petite mitochondrial genome, as well as to clonal heterogeneity. It is likely that tandem repeats on the same mtDNA molecule also differ, i.e., that there is intramolecular heterogeneity, and that this accounts for the stability of the heterogeneity. Continuing deletion is probably responsible for the appearance of “new” fragments in petite subclones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.