Abstract
We consider the three dimensional gravitational Vlasov–Poisson (GVP) system in both classical and relativistic cases. The classical problem is subcritical in the natural energy space and the stability of a large class of ground states has been derived by various authors. The relativistic problem is critical and displays finite time blow up solutions. Using standard concentration compactness techniques, we however show that the breaking of the scaling symmetry allows the existence of stable relativistic ground states. A new feature in our analysis which applies both to the classical and relativistic problem is that the orbital stability of the ground states does not rely as usual on an argument of uniqueness of suitable minimizers—which is mostly unknown—but on strong rigidity properties of the transport flow, and this extends the class of minimizers for which orbital stability is now proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.