Abstract

AbstractOrganic light‐emitting diodes (OLEDs) have great potential applications in display and solid‐state lighting. Stability, cost, and blue emission are key issues governing the future of OLEDs. The synthesis and photoelectronics of a series of three kinds of binaphthyl (BN) derivatives are reported. BN1–3 are “melting‐point‐less” and highly stable materials, forming very good, amorphous, glass‐like films. They decompose at temperatures as high as 485–545 °C. At a constant current density of 25 mA cm−2, an ITO/BN3/Al single‐layer device has a much‐longer lifetime (>80 h) than that of an ITO/NPB/Al single‐layer device (8 h). Also, the lifetime of a multilayer device based on BN1 is longer than a similar device based on NPB. BNs are efficient and versatile OLED materials: they can be used as a hole‐transport layer (HTL), a host, and a deep‐blue‐light‐emitting material. This versatility may cut the cost of large‐scale material manufacture. More importantly, the deep‐blue electroluminescence (emission peak at 444 nm with CIE coordinates (0.16, 0.11), 3.23 cd A−1 at 0.21 mA cm−2, and 25200 cd m−2 at 9 V) remains very stable at very high current densities up to 1000 mA cm−2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.