Abstract
Genetically modified mesenchymal stem cells (MSCs) are potentially valuable tools for the novel treatment of human illnesses. Here, we investigated whether gene transfers by self-complementary adeno-associated viruses (scAAV) lead to promising genetic modification in human bone marrow and umbilical cord blood MSCs. Of the various scAAVs, scAAV2, and scAAV5 effectively and safely expressed transgenes in both hMSCs. Transduction efficiency with scAAV2 at 1000 multiplicity of infection was 66.3 ± 9.4% and 67.6 ± 6.7% in bone marrow and umbilical cord blood MSCs, respectively. A co-infection study showed that the distinct scAAV2 and scAAV5 can effectively express different transgenes in the same hMSC. hMSCs transduced by scAAVs showed long-term gene expression for three months in rat brains. Genetic modification by scAAVs did not affect osteogenic differentiation of hMSCs. Therefore, the present study strongly supports the promising potential of scAAVs as a technical platform for safe, long-term transgene expression in hMSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.