Abstract

In microfluidics, various chemical processes can be integrated utilizing parallel multiphase flows. Our group has extended this research to nanofluidics, and recently performed the extraction of lipids using parallel two-phase flow in nanochannels. Although this was achieved in surface-modified nanochannels, a stable condition of parallel two-phase flow remains unknown due to difficulties in device fabrication, for a suitable method of bonding surface-modified substrates is lacking. Therefore, research on parallel two-phase flow in nanochannels has been limited. Herein, a new bonding method which improves the wash process for the substrates and increases the bonding rate to ∼100% is described. The conditions to achieve parallel organic/aqueous two-phase flow were then studied. It was revealed that in nanochannels, higher capillary numbers for the organic phase flow were required compared to that in microchannels. The newly developed fabrication process and flow regimes will contribute to realize integrated nanofluidic devices capable of analyzing single molecules/cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call