Abstract
<p><span>We presents local gravity field modelling in a spatial domain using the finite element method (FEM). FEM as a numerical method is applied for solving the geodetic boundary value problem with oblique derivative boundary conditions (BC). We derive a novel FEM numerical scheme which is the second order accurate and more stable than the previous one published in [1]. A main difference is in applying the oblique derivative BC. While in the previous FEM approach it is considered as an average value on the bottom side of finite elements, the novel FEM approach is based on the oblique derivative BC considered in relevant computational nodes. Such an approach should reduce a loss of accuracy due to averaging. Numerical experiments present </span><span>(i) </span><span>a reconstruction of EGM2008 as a harmonic function over the extremely complicated Earth’s topography in the Himalayas and Tibetan Plateau, and (ii) local gravity field modelling in Slovakia with the high-resolution 100 x 100 m while using terrestrial gravimetric data.</span></p><p><span>[1] </span>Macák, Z. Minarechová, R. Čunderlík, K. Mikula, The finite element method as a tool to solve the oblique derivative boundary value problem in geodesy. Tatra Mountains Mathematical Publications. Vol. 75, no. 1, 63-80, (2020)</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.