Abstract

Ocular dryness and contact lens(CL)-related microbial keratitis (MK) are two major risks of wearing CLs. The development of multifunctional surface coating for CLs with excellent hydrating and antimicrobial properties is a practical strategy to improve the comfort of CL wearers and to prevent corneal infection. Here, we develop zwitterionic and antimicrobial metal-phenolic networks (MPNs) based on the coordination of copper ions (CuII) and the poly(carboxylbetaine-co-dopamine methacrylamide) copolymer (PCBDA), which can be easily one-step prepared onto CLs due to the near-universal adherent properties of catechol groups. The zwitterionic and antifouling carboxybetaine (CB) groups of the CuII-PCBDA coating can significantly increase the wettability of CLs and reduce their protein adsorptions, resulting in a lens surface that is more water retentive and with lower protein binding to prevent tear film evaporation and eye dryness. In addition, since the immobilized copper ions in the MPNs impart them with ion-mediated antimicrobial activity, the CuII-PCBDA coating exhibits a strong and broad-spectrum antimicrobial activity against MK related pathogenic microbes, including bacteria, such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, and fungi, such as Candida albicans. Compared with a pristine CL, the CuII-PCBDA-coated CL effectively inhibited biofilm formation even after daily exposure to the above microbial environment for 14 days. Notably, the CuII-PCBDA coating developed in this study is not only biocompatible with 100% cell viability following direct contact with human corneal epithelial cells (HCECs) for 48 h but also maintains the optical clarity of the native CLs. Thus, the CuII-PCBDA coating has a great application potential for the development of a multifunctional surface coating for CLs for increased CL comfort and prevention of MK.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.