Abstract

BACKGROUND Bovine tuberculosis (TB) is a zoonotic disease caused by Mycobacterium bovis, responsible for causing major losses in livestock. A cost effective alternative to control the disease could be herd vaccination. The bacillus Calmette-Guérin (BCG) vaccine has a limited efficacy against bovine TB, but can improved by over-expression of protective antigens. The M. bovis antigen 85B demonstrates ability to induce protective immune response against bovine TB in animal models. However, current systems for the construction of recombinant BCG expressing multiple copies of the gene result in strains of low genetic stability that rapidly lose the plasmid in vivo. Employing antibiotic resistance as selective markers, these systems also compromise vaccine safety. We previously reported the construction of a stable BCG expression system using auxotrophic complementation as a selectable marker.OBJECTIVES The fundamental aim of this study was to construct strains of M. bovis BCG Pasteur and the auxotrophic M. bovis BCG ΔleuD expressing Ag85B and determine their stability in vivo.METHODS Employing the auxotrophic system, we constructed rBCG strains that expressed M. bovis Ag85B and compared their stability with a conventional BCG strain in mice. Stability was measured in terms of bacterial growth on the selective medium and retention of antigen expression.FINDINGS The auxotrophic complementation system was highly stable after 18 weeks, even during in vivo growth, as the selective pressure and expression of antigen were maintained comparing to the conventional vector.MAIN CONCLUSION The Ag85B continuous expression within the host may generate a stronger and long-lasting immune response compared to conventional systems.

Highlights

  • Bovine tuberculosis (TB) is a zoonotic disease caused by Mycobacterium bovis, responsible for causing major losses in livestock

  • Production of homogeneous Ag85B - Synthetic oligonucleotides used for polymerase chain reaction (PCR) amplification of fbpB were designed based on the complete genome sequence of M. bovis AF2122/97 and using Vector NTI 10.0 software (Invitrogen) (Table)

  • After IPTG induction, E. coli BL21 Star (DE3) cells transformed with pAE::85B showed expression of a recombinant protein with the expected molecular mass (~30 kDa), it was found in the insoluble fraction

Read more

Summary

Introduction

Bovine tuberculosis (TB) is a zoonotic disease caused by Mycobacterium bovis, responsible for causing major losses in livestock. A cost effective alternative to control the disease could be herd vaccination. The bacillus Calmette-Guérin (BCG) vaccine has a limited efficacy against bovine TB, but can improved by over-expression of protective antigens. The M. bovis antigen 85B demonstrates ability to induce protective immune response against bovine TB in animal models. Current systems for the construction of recombinant BCG expressing multiple copies of the gene result in strains of low genetic stability that rapidly lose the plasmid in vivo. Employing antibiotic resistance as selective markers, these systems compromise vaccine safety. We previously reported the construction of a stable BCG expression system using auxotrophic complementation as a selectable marker

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call