Abstract
Expression of CD80 or CD86 costimulatory molecules on tumor cells can produce rejection of immunogenic but not poorly immunogenic tumors. We have previously shown that anti-CD3 single-chain antibodies expressed on the surface of cells can directly activate T cells. We therefore investigated whether anti-CD3 "receptors" could enhance CD86-mediated rejection of poorly immunogenic tumors. Expression of anti-CD3 receptors on cells was increased by introduction of membrane-proximal "spacer" domains containing glycosylation sites between the single-chain antibody and the transmembrane domain of the chimeric receptors. Removal of glycosylation sites in the spacer reduced surface expression due to increased shedding of chimeric receptors from the cell surface. Induction of T-cell proliferation by anti-CD3 receptors did not correlate with the expression level of chimeric protein, but rather depended on the physical properties of the spacer. Anti-CD3 receptors effectively induced T-cell cytotoxicity, whereas coexpression with CD80 or CD86 was required for generating T-cell proliferation and IL-2 secretion. Although expression of CD86 did not significantly delay the growth of poorly immunogenic B16-F1 tumors, expression of anti-CD3 receptors with CD86 produced complete tumor rejections in 50% of mice and induced significant protection against wild-type B16-F1 tumor cells. Our results show that spacer domains can dramatically influence the surface expression and the biological activity of chimeric antibody receptors. The strong antitumor activity produced by anti-CD3 receptors and CD86 on tumor cells indicates that this strategy may be beneficial for the gene-mediated therapy of poorly immunogenic tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.