Abstract

The 3D Zernike polynomials form an orthonormal basis of the unit ball. The associated 3D Zernike moments have been successfully applied for 3D shape recognition; they are popular in structural biology for comparing protein structures and properties. Many algorithms have been proposed for computing those moments, starting from a voxel-based representation or from a surface based geometric mesh of the shape. As the order of the 3D Zernike moments increases, however, those algorithms suffer from decrease in computational efficiency and more importantly from numerical accuracy. In this paper, new algorithms are proposed to compute the 3D Zernike moments of a homogeneous shape defined by an unstructured triangulation of its surface that remove those numerical inaccuracies. These algorithms rely on the analytical integration of the moments on tetrahedra defined by the surface triangles and a central point and on a set of novel recurrent relationships between the corresponding integrals. The mathematical basis and implementation details of the algorithms are presented and their numerical stability is evaluated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.