Abstract
In this paper, we reexamine the quantum correlations in a four-state single-atom system in the weak coupling regime, aiming at the realization of stable entanglement and one-way steering via dissipation rather than coherent evolution process. Under the near-resonant conditions, we find out that a single atom can act as a reservoir and behave like a two-level system with a single dissipation channel, through which the composite Bogoliubov mode will evolve into a vacuum state, resulting in the appearance of stationary entanglement between two original modes. In addition, the one-way steering is generated when the symmetry is broken by choosing asymmetrical coupling constants. The present scheme may provide convenience for experimental implement and find applications in quantum information processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.