Abstract

Attenuation of the signal received from sources causing anomalies and reduction of data resolution are the negative features of airborne measurements. Using a stable downward continuation method is a practical way to address these shortcomings. In this study, we investigated the efficiency of various stabilizers in achieving stable downward continued data. The purpose of this study is to select the most appropriate stabilizer(s) for this operation. We examined the various stabilizing functions by introducing them into the Tikhonov regularization problem. The results of research on synthetic airborne gravity and magnetic data showed that βL1 (the other definition of L1 norm) and SM (the smoothest model) stabilizers have the potential to be used in the stable implementation of the downward continuation method. These stabilizers performed better than the other in the three comparisons, including visual, quantitative (RMS error), and graphical comparisons. Also, by examining the airborne magnetic data related to the Esfordi district in Yazd province (Iran), it was found that in general the βL1 stabilizer is more suitable than the other stabilizing functions studied in this research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call