Abstract
BackgroundMosquitoes are the most important invertebrate viral vectors in humans and harbor a high diversity of understudied viruses, which has been shown in many mosquito virome studies in recent years. These studies generally performed metagenomics sequencing on pools of mosquitoes, without assessment of the viral diversity in individual mosquitoes. To address this issue, we applied our optimized viral metagenomics protocol (NetoVIR) to compare the virome of single and pooled Aedes aegypti and Culex quinquefasciatus mosquitoes collected from different locations in Guadeloupe, in 2016 and 2017.ResultsThe total read number and viral reads proportion of samples containing a single mosquito have no significant difference compared with those of pools containing five mosquitoes, which proved the feasibility of using single mosquito for viral metagenomics. A comparative analysis of the virome revealed a higher abundance and more diverse eukaryotic virome in Aedes aegypti, whereas Culex quinquefasciatus harbors a richer and more diverse phageome. The majority of the identified eukaryotic viruses were mosquito-species specific. We further characterized the genomes of 11 novel eukaryotic viruses. Furthermore, qRT-PCR analyses of the six most abundant eukaryotic viruses indicated that the majority of individual mosquitoes were infected by several of the selected viruses with viral genome copies per mosquito ranging from 267 to 1.01 × 108 (median 7.5 × 106) for Ae. aegypti and 192 to 8.69 × 106 (median 4.87 × 104) for Cx. quinquefasciatus. Additionally, in Cx. quinquefasciatus, a number of phage contigs co-occurred with several marker genes of Wolbachia sp. strain wPip.ConclusionsWe firstly demonstrate the feasibility to use single mosquito for viral metagenomics, which can provide much more precise virome profiles of mosquito populations. Interspecific comparisons show striking differences in abundance and diversity between the viromes of Ae. aegypti and Cx. quinquefasciatus. Those two mosquito species seem to have their own relatively stable "core eukaryotic virome", which might have important implications for the competence to transmit important medically relevant arboviruses. The presence of Wolbachia in Cx. quinquefasciatus might explain (1) the lower overall viral load compared to Ae. aegypti, (2) the identification of multiple unknown phage contigs, and (3) the difference in competence for important human pathogens. How these viruses, phages, and bacteria influence the physiology and vector competence of mosquito hosts warrants further research.
Highlights
Mosquitoes are the most important invertebrate viral vectors in humans and harbor a high diversity of understudied viruses, which has been shown in many mosquito virome studies in recent years
Four pools containing males or females Ae. aegypti or Cx. quinquefasciatus collected from Les Abymes within the east island of Guadeloupe during the rainy season of 2016 were sequenced as a pilot study (Table 1, Additional file 1)
Our study firstly demonstrates that viral metagenomics is feasible on single mosquitoes
Summary
Mosquitoes are the most important invertebrate viral vectors in humans and harbor a high diversity of understudied viruses, which has been shown in many mosquito virome studies in recent years. These studies generally performed metagenomics sequencing on pools of mosquitoes, without assessment of the viral diversity in individual mosquitoes. Guadeloupe is the largest island of the French West Indies in the Caribbean, with an estimated population of 405,000 [1]. With the population mobility among islands, population growth, and uncontrolled urbanization, the Caribbean region is under increasing risk of mosquito-borne viruses and forecasting the occurrence of epidemics is a challenge [2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.