Abstract

Three dimensional topological Dirac semi-metals represent a novel state of quantum matter with exotic electronic properties, in which a pair of Dirac points with the linear dispersion along all momentum directions exist in the bulk. Herein, by using the first principles calculations, we discover a new metastable allotrope of Ge and Sn in the staggered layered dumbbell structure, named as germancite and stancite, to be Dirac semi-metals with a pair of Dirac points on its rotation axis. On the surface parallel to the rotation axis, a pair of topologically non-trivial Fermi arcs are observed and a Lifshitz transition is found by tuning the Fermi level. Furthermore, the quantum thin film of germancite is found to be an intrinsic quantum spin Hall insulator. These discoveries suggest novel physical properties and future applications of the new metastable allotrope of Ge and Sn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.