Abstract

Objective. The objective of the study is to determine various stable characteristics of images (semi-invariants and invariants) as descriptors necessary for the formation of a feature space of standards intended for recognizing images of different nature belonging to different classes of objects. Methods. The authors propose metrics for evaluating the proximity of the recognized image to a given standard in the space of covariance matrices, based on the obtained descriptors as a methodological basis for constructing image recognition methods. Results. The content of the main stages of selecting descriptors for a given class of objects is developed, taking into account the different illumination of the recognized images. The effectiveness of the results obtained is confirmed by experimental studies related to the solution of the problem of recognition of special images - facies. Conclusions. The definition of stable image descriptors as invariants or semi-invariants to zoom and brightness transformations allows solving the problems of facies classification in conditions of the unstable shooting of recognized images. The images can be rotated and shifted in any way. In general, the proposed approach allows developing an effective image recognition system in the presence of various types of interference on the recognized images.

Highlights

  • В настоящей работе под инвариантами, применительно к задаче распознавания, понимаются в широком смысле дескрипторы – неизменные математические конструкции аналитического, вероятностного или статистического характера [2,3], служащие для описаний объектов, позволяющих осуществлять их поиск и распознавание

  • necessary for the formation of a feature space of standards intended for recognizing images of different nature belonging to different classes

  • The effectiveness of the results obtained is confirmed by experimental studies related to the solution

Read more

Summary

Introduction

В настоящей работе под инвариантами, применительно к задаче распознавания, понимаются в широком смысле дескрипторы – неизменные математические конструкции аналитического (алгебраического и геометрического), вероятностного или статистического характера [2,3], служащие для описаний объектов, позволяющих осуществлять их поиск и распознавание. Инвариантность – есть свойство математического выражения оставаться неизменным при выполнении определенных преобразований, что важно для задач классификации и распознавания объектов различной природы. Например, широко используемые в распознавании алгебраические многочлены для бинарных и полутоновых 2D и 3D изображений, которые являются инвариантами относительно аффинных преобразований [4,5,6]. К инвариантам можно отнести некоторые интегрированные числовые характеристики и конструкции (множества), например: 1) нормализованные гистограммы распределения яркостей в классе изображений, 2) подготовленные для распознавания или измерения расстояний матрицы ковариаций для каждого класса объектов, 3) средние значения (математические ожидания) вероятности распределения яркостных оттенков и значения отдельных признаков, характерных для всего класса объектов; 4) любые характеристики движения, при которых сохраняются расстояния между точками: площадь геометрической фигуры, угол между двумя прямыми - инвариант движения.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.