Abstract

Air stable Co3Fe7–CoFe2O4 nanoparticles have been synthesized via one-step flame spray pyrolysis of a mixture of Fe/Co precursor solution under stronger reducing atmosphere. The as-synthesized nanoparticles with diameters of 20–80 nm showed a typical core shell structure and high stability for being one month in air, whose metallic Co3Fe7 cores were protected against oxidation by a surface shell of about 2–4 nm cobalt iron oxide (CoFe2O4). The ratio of metallic Fe/Co alloy nanoparticles was 7:3. The alloy nanoparticles exhibited enhanced saturation magnetization (126.1 emu/g), compared with flame sprayed iron nanoparticles with the same conditions. The formation process of metallic alloy nanoparticles with core–shell structure was investigated, which included three stages: flame combustion, reducing, and surface oxidation during the flame process. It is reckoned that such a continuous production approach is an effective way to produce the stable Co3Fe7 alloy nanoparticles with high saturation magnetization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.